I can rewrite rational exponents as radicals. I can simplify radicals.

Rational Exponents \& Radicals

Definition

A \qquad is a root of a number. The \qquad symbol is the radical symbol. The nth root of k is written:

$\sqrt[n]{k}$

A term with a rational exponent can be written as a \qquad .

The \qquad of the rational exponent becomes the \qquad of the radical.

The \qquad of the rational exponent becomes the \qquad .

Practice Exercises

Rewrite each expression in radical form.

1. $8^{4 / 3}$
2. $x^{5 / 9}$
3. $k^{3 / 2}$
4. $(-3)^{2 / 5}$
5. $2 x^{1 / 5}$
6. $(2 x)^{1 / 5}$

Rewrite each expression with rational exponents.

1. $\sqrt[7]{42^{3}}$
2. $\sqrt{r^{3}}$
3. $\sqrt[3]{11}$
4. $(\sqrt[4]{5})^{2}$
5. $\sqrt{6}$
6. $\sqrt[5]{30 m}$

I can rewrite rational exponents as radicals. I can simplify radicals.

Properties of Radicals	
$\sqrt[n]{a^{n}}=$	$\sqrt[3]{6^{3}}=$
$\sqrt[n]{a b}=$	$\sqrt[3]{9 x}=$
$\sqrt[n]{\frac{a}{b}}=$	$\sqrt[3]{p}$

Simplifying Radicals

Radicals that are simplified have:

- no \qquad in the radicand
- no \qquad in the radicand
- no \qquad in the radicand greater than the \qquad

