Algebra 2 Unit 2 WS7

Name:_____

Date:_____ Period:_____

Directions: Please answer the following questions. **Show work!!**

1. Is (-8, 11) a solution to the system? $\begin{cases} 5x + 4y = 4 \\ -7x - 3y = 10 \end{cases}$

2. Solve $3x^2 + 8 = 35$

Simplify. 3. 4i (5i - 12) 4. $\sqrt{-63}$

5. Perform the indicated operation, put the polynomial in standard form, and then fill in the blanks below. $(7 + 4x^2 - 2x)(3 + x^2)$

Standard for	m:			
Degree:				
Leading coef	ficient:			
Circle one:	Monomial	Binomial	Trinomial	Polynomial

6. Write an example of a polynomial equation with an even degree and negative leading coefficient.

7. Sketch the graph of the polynomial you wrote in #6.

```
8. Write the equation of a polynomial with the real roots of 4, -1, and -3 and passes through (1, -6).
```

9. Sketch a polynomial with a degree of 7, 4 real roots, and a negative leading coefficient.

- # Imaginary roots:
- # Relative minimum(s):
- # Relative maximum(s):

Use a graphing calculator to $10 y = x^3 = 8x^2 + y = 6$	find the following.			
10. $y = x^{2} = 0x^{2} + x = 0$				
Leading coefficient:				
End behaviors:				
Total number of roots:				
# of Real Roots:				
# of Imaginary Roots:				
Find the Real Roots using your calculator:				
# of Relative Min:	Find them (you may have to adjust your window):			
# of Relative Max:	Find them (you may have to adjust your window):			