Geometry (G-SRT.2)

Unit7 Notes 3: Similarity & Solving

Name: ______ Date: ______ Period: _____ I can setup proportions to model similar polygons. I can identify corresponding sides and angles of similar triangles. I can determine the scale factor between two similar figures and use it to solve problems.

Polygon Similarity:		
Polygons are <u>similar</u> if:		
Corresponding ANGLES are	Corresponding SIDES are	

1. Given that $\Delta AFG \sim \Delta DRH$. Complete the following.

2. $\triangle ABC$ is similar to another triangle. Provided is some information about the two triangles, $\frac{BC}{DR} = \frac{AB}{TD}$. From this

information determine the triangle similarity statement.

 $\Delta ABC \sim \Delta$ _____

3. Solve for the missing information, given that the two triangles in each question are SIMILAR.

4. If the three sides of a triangle are in ratio of 3:5:7 and the perimeter of the triangle is 12 cm. What is the length of the longest side?

5. Use the scale factor to determine the missing values.

a) CBAD : FKLH is 3:2

b) Δ LMN : Δ LJK is 1:2

6. Use the Pythagorean Theorem to help you on these. Solving for the missing values.

If $\triangle ABC \sim \triangle DEF$, and right $\triangle ABC$ has sides of AB = 8, BC = 15, & AC = x where AC is the hypotenuse. Also, right $\triangle DEF$ has sides DE = z, EF = y, & DF = 51.

x = _____ y = _____

z = _____