\qquad
Unit7 Notes 3: Similarity \& Solving
Date: \qquad Period: \qquad
I can setup proportions to model similar polygons. I can identify corresponding sides and angles of similar triangles. I can determine the scale factor between two similar figures and use it to solve problems.

Polygon Similarity: Polygons are similar if:	
Corresponding ANGLES are	Corresponding SIDES are

1. Given that $\triangle \mathrm{AFG} \sim \Delta \mathrm{DRH}$. Complete the following.

$$
\angle \mathrm{H} \cong \angle \ldots \quad \frac{D R}{A F}=\frac{D H}{\square} \quad \angle \mathrm{D} \cong \angle \ldots \quad \frac{\square}{R H}=\frac{A G}{D H}
$$

2. $\triangle \mathrm{ABC}$ is similar to another triangle. Provided is some information about the two triangles, $\frac{B C}{D R}=\frac{A B}{T D}$. From this information determine the triangle similarity statement.
$\Delta \mathrm{ABC} \sim \Delta$ \qquad
3. Solve for the missing information, given that the two triangles in each question are SIMILAR.
a)

b)

c)

4. If the three sides of a triangle are in ratio of 3:5:7 and the perimeter of the triangle is 12 cm . What is the length of the longest side?
5. Use the scale factor to determine the missing values.
a) CBAD : FKLH is $3: 2$
b) $\Delta \mathrm{LMN}: \Delta \mathrm{LJK}$ is $1: 2$

$\mathrm{x}=$ \qquad $y=$ \qquad
$\mathrm{x}=$ \qquad $y=$
6. Use the Pythagorean Theorem to help you on these. Solving for the missing values.

If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, and right $\triangle \mathrm{ABC}$ has sides of $A B=8, B C=15$, \& $A C=x$ where $A C$ is the hypotenuse. Also, right $\triangle \mathrm{DEF}$ has sides $D E=z, E F=y, \& D F=51$.
$x=$ \qquad $y=$ \qquad
z = \qquad

