\qquad
Unit 7 Notes6: Side-Splitting Theorem
Date: \qquad Period: \qquad
I can describe the Side Splitting Theorem. I can use this Theorem and its corollary to solve problems.
Review and Explore: Using what you know about similarity, answer the following.

1. Are there similar polygons shown in the diagram to the right? Why or why not?
2. Solve for the missing measurements (variables in the diagram).

3. Using your answers from \#2, test each of the following proportions to identify whether they are true or false.
a) $\frac{S H}{S A}=\frac{S E}{S P}$
True False
b) $\frac{S H}{H A}=\frac{H E}{A P}$
True False
c) $\frac{A S}{H S}=\frac{H E}{A P}$
True False
d) $\frac{S P}{S E}=\frac{H E}{A P}$
True False
e) $\frac{E P}{S E}=\frac{H A}{S H} \quad$ True False
4. Using one of the descriptions below, fill in the proportions used in each part of \#3 with their corresponding labels. The first one has been done as an example.
Description Choices:
5. Small side
6. Large side
7. Neither
a) $\frac{S H}{S A}=\frac{S E}{S P} \rightarrow \frac{\text { small } \Delta \text { side }}{l \arg e \Delta \text { side }}=\frac{\text { small } \Delta \text { side }}{l \arg e \Delta \text { side }}$
b) $\frac{S H}{H A}=\frac{H E}{A P}$
c) $\frac{A S}{H S}=\frac{H E}{A P}$
d) $\frac{S P}{S E}=\frac{H E}{A P}$
e) $\frac{E P}{S E}=\frac{H A}{S H}$
8. What occurred that caused the false proportion(s)?
9. Did any true statements surprise you? Why?
\qquad

Examples:

3. If $B E / / A T, \mathrm{CB}=3, \mathrm{CA}=10$, and $\mathrm{CE}=6$, what is ET ?
a) 5
b) 14
c) 20
d) 26

2.

4. In $\triangle A B C$, D is on $A B$, and E is on $B C$ such that $D E / / A C$. If $\mathrm{DB}=2, \mathrm{DA}=7$, and $\mathrm{DE}=3$, what is AC ?

Explore:
a) $\frac{G A}{A B}=\frac{G D}{D E}$ True False
b) $\frac{G A}{B C}=\frac{G D}{D E}$ True False
c) $\frac{A B}{E F}=\frac{D E}{B C} \quad$ True False
d) $\frac{A C}{D F}=\frac{G B}{G E}$ True False

$\begin{array}{lll}\text { e) } \frac{B C}{A B}=\frac{E F}{D E} & \text { True } & \text { False }\end{array} \quad$ f) $\frac{F D}{E D}=\frac{B A}{C A} \quad$ True \quad False

Corollary (Result) of Side Splitting Theorem: If multiple parallel lines intersect \qquad , then the segments \qquad are proportional. Just be careful to always match up \qquad

Examples:

Complete the proportions.
a) $\frac{A B}{B C}=\frac{D E}{\square}$
b) $\frac{A C}{D F}=\frac{A B}{\square}$
c) $\frac{G E}{D F}=\frac{\square}{A C}$
d) $\frac{G F}{D E}=\frac{G C}{\square}$
e) $\frac{\square}{D F}=\frac{B C}{E F}$
f) $\frac{C B}{C G}=\frac{F E}{\square}$

g) $\frac{G A}{}=\frac{A D}{B E}$
h) $\frac{C F}{A D}=\frac{}{D G}$

Examples: Find the values for the missing variables.
a)

b)

