\qquad
Date:
Period: \qquad
This section to be completed without a graphing calculator.
Do the required work to decide if the following are polynomials in one variable. If they are polynomials, fill in the information provided. If it is not a polynomial, explain why.

1. $4.5-7 \mathrm{x}^{3}+2 \mathrm{x}^{5}+9.4 \mathrm{x}$

Circle one: Monomial Binomial Trinomial Polynomial Not Polynomial
Descending order:
Degree
Leading Coefficient:
2. $-8 x^{3}\left(5 x^{4}-4 x^{5}\right)$

Circle one: Monomial Binomial Trinomial Polynomial Not Polynomial
Descending order:
Degree
Leading Coefficient:
3. $5 x+\frac{4}{x^{3}}-9 x^{2}$

Circle one: Monomial Binomial Trinomial Polynomial Not Polynomial
Descending order:
Degree
Leading Coefficient:

Sketch the following, if possible.
4. Degree of 9, 5 real zeros, negative leading coefficient 5. Degree of 9,4 real zeros,
positive leading coefficient

6. Degree of 8, 4 real zeros, positive leading coefficient
7. Degree of 8, 6 real zeros, negative leading coefficient

8. Without using a calculator, just looking at the equation $y=14 x^{18}-7 x^{15}+2 x^{5}-93$, answer the following:
a. What are the total number of solutions?
b. What is the leading coefficient?
c. What are the end behaviors?
d. If I told you that this graph crossed the x -axis 10 times, how many imaginary zeroes will it have?
9. Give the sketch to the right, answer the following:
a. \# of total roots:
b. \# of real roots:
c. \# of imaginary roots:

Divide, using the method of your choice.
10. $\frac{x^{3}+x^{2}-10 x+13}{x-2}$
11. $\left(2 x^{3}+5 x^{2}-2 x-15\right) \div(2 x-3)$
12. $\left(-2 x^{2}+35\right) \div(x-4)$
13. $\frac{2 x^{4}-x^{3}+x^{2}+x-3}{x^{2}-1}$
14. $\frac{x^{4}-3 x^{3}+5 x-6}{x+2}$
15. Is $(x-1)$ a factor of $x^{3}-3 x^{2}-7 x+9$?

Use the given factor and your algebra skills to find all the roots of the polynomial. Give exact answers; no decimals.
16. $f(x)=x^{3}-6 x^{2}+14 x-15 ;(x-3)$
17. $g(x)=x^{4}-2 x^{3}+x^{2}-4 ;(x+1),(x-2)$
18. Write a polynomial function with zeros at $-3,1$, and 7 that goes through $(0,42)$.

This section can be completed with a graphing calculator.
19. Given the equation $y=0.02 x^{5}+0.004 x^{4}-1.3 x^{3}-0.3 x^{2}+10 x+25$, find the following: Round to the hundredths.
a. Find the real roots:
b. Find the relative maximum(s):
c. Find the relative minimum(s):

Use a graphing calculator to find real root(s), then use your algebra skills to find all the roots. Give exact answers; no decimals.
20. $f(x)=x^{3}-10 x^{2}+18 x-4$
21. $g(x)=x^{4}-7 x^{3}+13 x^{2}+x-20$

