I can write equations of parallel and perpendicular lines.
Using what you remember about transformations:

1. Translate the graphed line 3 units to the right. Label your new line \boldsymbol{a}.

Find the slope of line b : \qquad
Find the slope of line \boldsymbol{a} : \qquad
3. Rotate the line 90° counter-clockwise about the origin. Label the new line a.

Find the slope of line b : \qquad
Find the slope of line a : \qquad

Summarize:

The slopes of \qquad lines are \qquad .
Find the slope of line b : \qquad
Find the slope of line \boldsymbol{a} : \qquad
2. Rotate the line 90° clockwise about the origin. Label the new line \boldsymbol{a}.

-

The slopes of \qquad lines are \qquad
\qquad _.

The symbol for slope is \qquad .

The formula for slope is \qquad .

The symbol for the y-intercept is \qquad _.

I can write equations of parallel and perpendicular lines.

Using Slope to write the Equation of the Line

Write the equation of the line through $(0,9)$ and $(1,5)$.

Write the equation of the line through the points $(-3,2)$ and $(-4,5)$.

Writing Equations of Parallel and Perpendicular Lines

Example: Write the equation for a line parallel to one with $m=2$ and passing through the point $(3,7)$.

Example: Write the equation for a line perpendicular to one with $m=\frac{3}{2}$ and passing through the point $(3,5)$.

Example: Write the equation for a line through the point $(-9,5)$:
a. parallel to $y=9 x+3$
b. perpendicular to $y=9 x+3$

Example: Are the following lines parallel, perpendicular, or neither? $7 x-5 y=10$ and $y=\frac{5}{7} x+4$

