I can develop a formula for distance. I can develop a formula for midpoint.

Finding Distances: Solve for the missing side of the triangles below.
1.

2.

You can use the Pythagorean Theorem to help you find the distance between the points $A(2,5)$ and $B(-4,-3)$.

A Plot the points A and B in the coordinate plane at right.

B Draw $\overline{A B}$.

C Draw a vertical line through point A and a horizontal line through point B to create a right triangle. Label the intersection of the vertical line and the horizontal line as point C.

D Each small grid square is 1 unit by 1 unit. Use this fact to find the lengths $A C$ and $B C$.

\qquad

E By the Pythagorean Theorem, $A B^{2}=A C^{2}+B C^{2}$.
Complete the following using the lengths from Step D.
$A B^{2}=\quad \quad^{2}+\quad{ }^{2}$

REFLECT

1a. Explain how you solved for $A B$ in Step F .

1b. Can you use the above method to find the distance between any two points in the coordinate plane? Explain.
\qquad
\qquad

I can develop a formula for distance. I can develop a formula for midpoint.

Given: $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$
Find: The distance between A and B repeating the process above realizing that the only change is that both ordered pairs are unknown/variables.

Distance Formula:

Processing:

1. Find the distance between $(8,-4)$ and $(2,2)$.
2. Find the distance between (-1, 2) and (-4, 6).

Finding Midpoints:

Given $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$

Find: The midpoint of $A B$.

Midpoint Formula:

I can develop a formula for distance. I can develop a formula for midpoint.

Note: The result of this formula is NOT a distance or length - it is a POINT.

