I can develop a formula for distance. I can develop a formula for midpoint.

**Finding Distances:** Solve for the missing side of the triangles below.

1.



2.



You can use the Pythagorean Theorem to help you find the distance between the points A(2, 5) and B(-4, -3).

A Plot the points A and B in the coordinate plane at right.

**B** Draw  $\overline{AB}$ .

C Draw a vertical line through point *A* and a horizontal line through point *B* to create a right triangle. Label the intersection of the vertical line and the horizontal line as point *C*.



**D** Each small grid square is 1 unit by 1 unit. Use this fact to find the lengths *AC* and *BC*.

$$BC = \underline{\hspace{1cm}}$$

By the Pythagorean Theorem,  $AB^2 = AC^2 + BC^2$ . Complete the following using the lengths from Step D.

$$AB^2 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

## REFLECT

**1a.** Explain how you solved for AB in Step F.

**1b.** Can you use the above method to find the distance between any two points in the coordinate plane? Explain.

I can develop a formula for distance. I can develop a formula for midpoint.

**Given:**  $A(x_1, y_1)$ ,  $B(x_2, y_2)$ 

Find: The distance between A and B repeating the process above realizing that the only change is that both ordered

pairs are unknown/variables.



| Distance | Formul | la: |
|----------|--------|-----|
|----------|--------|-----|

## **Processing:**

- 1. Find the distance between (8, -4) and (2, 2).
- 2. Find the distance between (-1, 2) and (-4, 6).

## **Finding Midpoints:**

Given  $A(x_1, y_1)$ ,  $B(x_2, y_2)$ 

**Find:** The midpoint of *AB*.



**Midpoint Formula:** 

Unit5 Notes3 G.GPE.B4

I can develop a formula for distance. I can develop a formula for midpoint.

Note: The result of this formula is **NOT** a distance or length – it is a **POINT**.