I can rewrite polynomials by factoring. I can factor using greatest common factors. Recall,

- factor:

What are the factors of $12 ?$

Why are those factors? How do we know they are factors?

So when we are factoring polynomials, we are trying to find the \qquad
Consider $5 x+10$. Factor $5 x+10$.

Consider $x^{2}+6 x+8$. Factor $x^{2}+6 x+8$.

We are going to explore algebraic ways to factor rather than depending on the algebra tiles.

I can rewrite polynomials by factoring. I can factor using greatest common factors.

I can rewrite polynomials by factoring. I can factor using greatest common factors.

Strategy 1: Factor by removing the GCF

Think about the following with algebra tiles:

$2 x-6$	$x^{2}+3 x$

* To find the greatest common factor, find the \qquad
\qquad AND

For example, find the greatest common factor of $12 x^{4}$ and $8 x^{2}$.

* To factor by removing the GCF,

1)
2)
3)

Check:
For example, factor $12 x^{4}+8 x^{2}$.

I can rewrite polynomials by factoring. I can factor using greatest common factors.
Independent Practice: Factor by removing the GCF.

1. $5 \mathrm{x}-35$
2. $8 a^{3}+16 a^{2}$
3. $24 y^{2}+8 y$
4. $36-20 \mathrm{x}$

5. $2 m-5 m^{4}$

6. $3 x^{2}-9 x+3$
7. $12 x^{3}+8 x^{2}-6 x$
8. $33 \mathrm{~d}^{3}+22 \mathrm{~d}-11$
