I can rewrite polynomials by factoring. I can factor trinomials with $1x^2$.

Strategy3: Factor $x^2 + bx + c$

Consider $x^2 + 6x + 8$. Draw out this computation with algebra tiles and then factor it.

Consider $x^2 + 3x - 4$. Draw out this computation with algebra tiles and then factor it.

*To factor $x^2 + bx + c$,

- 1)
- 2)
- 3)

Check:

For example, factor $x^2 - 9x + 20$

There are a few **tricks** to factoring depending on the value of the third term in x^2 + bx + c. Let's see if we can figure out what those tricks are...

(x+p)(x+q)	Multiply $x^2 + bx + c$	Signs of b and c
(x+2)(x+3)		
(x+2)(x-3)		
(x-2)(x+3)		
(x-2)(x-3)		

- The value of c is positive when
- The value of c is negative when

Independent Practice: Factor

$$1. x^2 - 8x - 9$$

$$2. x^2 - 10x + 24$$

$$3. y^2 + 3y - 18$$

$$4. w^2 + w - 12$$

$$5. x^2 - 17x + 30$$

$$7. p^2 + 5p + 6$$

$$8. y^2 - 13y + 40$$

9.
$$x^2 - 10x - 39$$

10.
$$x^2 - x - 30$$